Q1.
Match the computer science process to each correct label.
You should write a label A–F next to each process.
You should not use the same label more than once.
 
	A
	Abstraction

	B
	Data validation

	C
	Decomposition

	D
	Efficiency

	E
	Random number generation

	F
	Variable assignment


 
	Process
	Label (A–F)

	Breaking down a problem into sub-problems.
	 

	Removing unimportant details.
	 

	Ensuring the user enters data that is allowed, for example within a correct range.
	 


(Total 3 marks)
Q2.
The algorithm shown in the code below is designed to help an athlete with their training. It uses two subroutines getBPM and wait:
•   getBPM() returns the athlete’s heart rate in beats per minute from an external input device
•   wait(n) pauses the execution of the algorithm for n seconds, so wait(60) would pause the algorithm for 60 seconds.
Line numbers have been included but are not part of the algorithm.
1     seconds ← 0
2     rest ← 50
3     REPEAT
4       bpm ← getBPM()
5       effort ← bpm – rest
6       IF effort ≤ 30 THEN
7         OUTPUT 'faster'
8       ELSE
9         IF effort ≤ 50 THEN
10          OUTPUT 'steady'
11        ELSE
12          OUTPUT 'slower'
13        ENDIF
14      ENDIF
15      wait(60)
16      seconds ← seconds + 60
17    UNTIL seconds > 200
(a)  State the most appropriate data type of the variable seconds in the algorithm shown in the code above.
___________________________________________________________________
___________________________________________________________________
(1)
(b)  Explain why rest could have been defined as a constant in the algorithm shown in the code above.
___________________________________________________________________
___________________________________________________________________
(1)
(c)  State the line number where iteration is first used in the algorithm shown in the code above.
___________________________________________________________________
___________________________________________________________________
(1)
(d)  Complete the trace table for the algorithm shown in the code above.
Some values have already been entered in the trace table:
•   the first value of seconds
•   the values returned by the subroutine getBPM that are assigned to the variable bpm.
You may not need to use all rows of the trace table.
 
	seconds
	bpm
	effort
	OUTPUT

	0
	70
	 
	 

	 
	80
	 
	 

	 
	100
	 
	 

	 
	120
	 
	 

	 
	 
	 
	 


(4)
(Total 7 marks)
Q3.
A developer is writing a program to convert a sequence of integers that represent playing cards to Unicode text.
The developer has identified that they need to create the subroutines shown in Figure 1 to complete the program.
Figure 1
 
	Subroutine
	Purpose

	getSuit(n)
	Returns:
•     the string 'hearts' if n is 0
•     the string 'diamonds' if n is 1
•     the string 'spades' if n is 2
•     the string 'clubs' if n is 3.

	getRank(n)
	Returns the number value of the card as a string, for example:
•     if n is 1 then 'ace' is returned
•     if n is 2 then 'two' is returned
•     if n is 10 then 'ten' is returned
•     if n is 11 then 'jack' is returned.

	convert(cards)
	Returns the complete string representation of the array cards.
For example:
•     if cards is [3, 1], the string returned would be 'three of diamonds '
•     if cards is [1, 0, 5, 2, 7, 0], the string returned would be 'ace of hearts five of spades seven of hearts '.


(a)  Explain how the developer has used the structured approach to programming.
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
(2)
(b)  State two benefits to the developer of using the three separate subroutines described in Figure 1 instead of writing the program without using subroutines.
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
(2)
(c)  Figure 2 shows the subroutine convert described in Figure 1.
Some parts of the subroutine have been replaced with the labels [image: ] to [image: ].
Figure 2
SUBROUTINE convert(cards)
  result ← ''
  max ← LEN(cards)
  index ← 0
  WHILE index < [image: ]
    rank ← [image: ] (cards[index])
    suit ← getSuit(cards[[image: ] + 1])
    c ← rank + ' of ' + suit + ' '
    result ← result + [image: ]
    index ← index + 2
  ENDWHILE
  RETURN [image: ]
ENDSUBROUTINE
State the pseudo-code that should be written in place of the labels in the subroutine written in Figure 2.
[image: ]  _______________________________________________________________
[image: ]  _______________________________________________________________
[image: ]  _______________________________________________________________
[image: ]  _______________________________________________________________
[image: ]  _______________________________________________________________
(5)
(Total 9 marks)
Q4.
(a)  This is one row of a bitmap image that uses different shades of grey:
[image: ] 
This row is stored using the following numbers to represent the different shades of grey:
[image: ] 
The algorithm shown in the code below uses this row.
row ← [56, 34, 0, 99, 72, 23]
newRow ← [0, 0, 0, 0, 0, 0]
FOR i ← 0 TO 5
  IF row[i] > 50 THEN
    newRow[i] ← 99
  ENDIF
ENDFOR
Complete the trace table for the algorithm shown in the code above. The first values have already been entered. You may not need to use all rows of the trace table.
 
	i
	newRow

	
	0
	1
	2
	3
	4
	5

	 
	0
	0
	0
	0
	0
	0

	0
	 
	 
	 
	 
	 
	 

	 
	 
	 
	 
	 
	 
	 

	 
	 
	 
	 
	 
	 
	 

	 
	 
	 
	 
	 
	 
	 

	 
	 
	 
	 
	 
	 
	 

	 
	 
	 
	 
	 
	 
	 

	 
	 
	 
	 
	 
	 
	 


(3)
(b)  State the purpose of the algorithm shown in the code above.
___________________________________________________________________
___________________________________________________________________
(1)
(Total 4 marks)
Q5.
Develop an algorithm, using either pseudo-code or a flowchart, that checks if the user has entered a string that represents a valid machine code instruction.
The machine code instruction is valid if it contains exactly eight characters and all of those characters are either '0' or '1'.
The algorithm should:
•   prompt the user to enter an 8-bit machine code instruction and store it in a variable
•   check that the instruction only contains the characters '0' or '1'
•   check that the instruction is exactly eight characters long
•   output 'ok' when the instruction is valid, otherwise it should output 'wrong'.
For example:
•   if the user enters the string '00101110' it should output 'ok'
•   if the user enters the string '11110' it should output 'wrong'
•   if the user enters the string '1x011001' it should output 'wrong'.
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
(Total 9 marks)
Q6.
State the comparisons that would be made when the linear search algorithm is used to search for the value 8 in the following array (array indices have been included above the array).
 
	0
	1
	2
	3
	4
	5
	6

	4
	7
	8
	13
	14
	15
	17


_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
(Total 3 marks)
Q7.
State the comparisons that would be made when the binary search algorithm is used to search for the value 8 in the following array (array indices have been included above the array).
 
	0
	1
	2
	3
	4
	5
	6

	4
	7
	8
	13
	14
	15
	17


_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
(Total 3 marks)
Q8.
State why binary search is considered a better algorithm than linear search.
_______________________________________________________________________
_______________________________________________________________________
(Total 1 mark)
Q9.
The algorithm in the code below is a new search algorithm.
arr ← [3, 4, 6, 7, 11, 14, 17, 18, 34, 42]
value ← 21
found ← False
finished ← False
i ← 0
down ← False
WHILE (found = False) AND (finished = False)
  IF arr[i] = value THEN
    found ← True
  ELSE
    IF arr[i] > value THEN
      down ← True
      i ← i – 1
    ELSE
      IF (arr[i] < value) AND (down = True) THEN
        finished ← True
      ELSE
        i ← i + 4
      ENDIF
    ENDIF
  ENDIF
ENDWHILE
Complete the trace table for the algorithm in the code above. The first row has been completed for you. You may not need to use all rows of the trace table.
 
	found
	finished
	i
	down

	False
	False
	0
	False

	 
	 
	 
	 

	 
	 
	 
	 

	 
	 
	 
	 

	 
	 
	 
	 


(Total 4 marks)
Q10.
The code below shows an algorithm.
x ← True
y ← False
IF NOT (x AND y) THEN
  OUTPUT 'A'
  IF NOT((NOT x) OR (NOT y)) THEN
    OUTPUT 'B'
  ELSE
    OUTPUT 'C'
  ENDIF
ELSE
  OUTPUT 'D'
  IF (NOT x) AND (NOT y) THEN
    OUTPUT 'E'
  ELSE
    OUTPUT 'F'
  ENDIF
ENDIF
State the output from the algorithm shown in the code above.
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
(Total 2 marks)
Q11.
Number the following lines of code in order (1–4) so that they create an algorithm where the final value of the variable n is 13.
The LEFTSHIFT operator performs a binary left shift.
For example, 4 LEFTSHIFT 2 would left shift the value 4 twice.
 
	Line of code
	Position (1–4 where 1 is the first line)

	t ← t - 1
	 

	n ← t – n
	 

	n ← 2
	 

	t ← n LEFTSHIFT 3
	 


(Total 3 marks)
Q12.
The Algebraic Patent Sewing Machine is a programmable sewing machine that creates patterns on rows of cloth. It is controlled by writing programs that use the following subroutines:
 
	Subroutine
	Description

	gotoRow(n)
	start the sewing machine needle at the left-hand side of row n

	move(n)
	move the needle forward by n cells without producing a pattern

	shape(s)
	produce shape s where s can be 'square' or 'circle' and move the needle to the next cell

	atEnd()
	returns True if the needle is at the end of the row or False otherwise


For example, if the cloth looks like this to begin with:
[image: ] 
The subroutine call gotoRow(2) will place the sewing machine needle at the point shown by the black cross:
[image: ] 
The subroutine call move(3) will move the sewing machine needle to the point shown by the black cross:
[image: ] 
The subroutine call gotoRow(1) will move the sewing machine needle to the point shown by the black cross:
[image: ] 
The subroutine call shape('square') will draw the following pattern and move the sewing machine needle to the point shown by the black cross:
[image: ] 
And finally, the subroutine call shape('circle') will draw the following pattern and move the sewing machine needle to the point shown by the black cross:
[image: ] 
All of the previous positions of the sewing machine needle would result in the subroutine call atEnd() returning False, however in the following example atEnd() would return True:
[image: ] 
(a)  Draw the final pattern after the following algorithm has executed.
gotoRow(0)
WHILE atEnd() = False
  shape('square')
  move(1)
ENDWHILE
gotoRow(1)
shape('circle')
move(1)
IF atEnd() = True THEN
  gotoRow(2)
ELSE
  move(1)
ENDIF
shape('square')
You should draw your answer on the following grid.
You do not need to show the position(s) of the needle in your answer.
[image: ] 
(4)
(b)  Draw the final pattern after the following algorithm has executed.
This question uses the MOD operator. MOD calculates the remainder after integer division, for example 7 MOD 5 = 2.
patterns ← ['circle', 'square', 'square', 'circle']
r ← 2
FOR k ← 0 TO 3
  gotoRow(k MOD r)
  move(k + 1)
  shape(patterns[k])
ENDFOR
You should draw your answer on the following grid.
You do not need to show the position(s) of the needle in your answer.
[image: ] 
(4)
(c)  Develop an algorithm, using either pseudo-code or a flowchart, to produce the pattern shown in the diagram below.
To gain full marks your answer must make appropriate use of iteration.
[image: ] 
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
(4)
(Total 12 marks)
Q13.
The algorithm shown below converts binary data entered as a string by the user into a representation of a black and white image.
The algorithm uses the + operator to concatenate two strings.
Characters in the string are indexed starting at zero. For example bdata[2] would access the third character of the string stored in the variable bdata
The MOD operator calculates the remainder after integer division, for example
17 MOD 5 = 2
bdata ← USERINPUT
image ← ''
FOR i ← 0 TO LEN(bdata) - 1
    IF bdata[i] = '0' THEN
        image ← image + '*'
    ELSE
        image ← image + '/'
    ENDIF
    IF i MOD 3 = 2 THEN
        OUTPUT image
        image ← ''
    ENDIF
ENDFOR
Complete the trace table for the algorithm shown above when the variable bdata is given the following value from the user:
110101
You may not need to use every row in the table. The algorithm output is not required.
 
	i
	image

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 


(Total 3 marks)
Q14.
Describe how the linear search algorithm works.
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
(Total 3 marks)
Q15.
Develop an algorithm, using either pseudo-code or a flowchart, that:
•   initialises a variable called regValid to False
•   sets a variable called regValid to True if the string contained in the variable reg is an uppercase R followed by the character representation of a single numeric digit.
Examples:
•   if the value of reg is R0 or R9 then regValid should be True
•   if the value of reg is r6 or Rh then regValid should be False
You may wish to use the subroutine isDigit(ch) in your answer. The subroutine isDigit returns True if the character parameter ch is a string representation of a digit and False otherwise.
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________
(Total 3 marks)
Q16.
The algorithms shown in Figure 1 and Figure 2 both have the same purpose.
The operator LEFTSHIFT performs a binary shift to the left by the number indicated.
For example, 6 LEFTSHIFT 1 will left shift the number 6 by one place, which has the effect of multiplying the number 6 by two giving a result of 12
Figure 1
    result ← number LEFTSHIFT 2
    result ← result – number
Figure 2
    result ← 0
    FOR x ← 1 TO 3
        result ← result + number
    ENDFOR
(a)  Complete the trace table for the algorithm shown in Figure 1 when the initial value of number is 4
You may not need to use all rows of the trace table.
 
	result

	 

	 

	 


(2)
(b)  Complete the trace table for the algorithm shown in Figure 2 when the initial value of number is 4
You may not need to use all rows of the trace table.
 
	x
	result

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 


(2)
(c)  The algorithms in Figure 1 and Figure 2 have the same purpose.
State this purpose.
___________________________________________________________________
___________________________________________________________________
(1)
(d)  Explain why the algorithm shown in Figure 1 can be considered to be a more efficient algorithm than the algorithm shown in Figure 2.
___________________________________________________________________
___________________________________________________________________
(1)
(Total 6 marks)
Q17.
Show the steps involved, for either the bubble sort algorithm or the merge sort algorithm, to sort the array shown below so the result is [1, 4, 5, 8]
[8, 4, 1, 5]
Circle the algorithm you have chosen:
Bubble sort                Merge sort
Steps:
	 


(Total 4 marks)

Page 1 of 2

Mark schemes
Q1.
3 marks for AO1 recall 
1 mark for 1 correct label;
2 marks for 2 correct labels;
3 marks for 3 correct labels;
Correct table is:
[image: ] 
R. all occurrences of a label entered more than once.
[3]
Q2.
(a)  Mark is for AO2
Integer/int;
A. programming language specific data type
1
(b)  Mark is for AO2
(The value) doesn’t change/vary (after being initialised);
1
(c)  Mark is for AO2
3 // three;
A. 3rd (line) // third (line);
1
(d)  4 marks for AO2
1 mark for seconds having values 60, 120 and 180 in that order;
1 mark for the final value of seconds as 240;
1 mark for the first value of effort as 20 and the first value of OUTPUT as 'faster'.
1 mark for the last three values in the effort column all correct and every output correct for these three values of effort;
Max 3 marks if any errors.
I. use of quote marks or minor spelling errors in the OUTPUT column.
I. values on different lines as long as the order is correct and no other values have been entered.
Correct table as follows:
[image: ] 
4
[7]
Q3.
(a)  2 marks for AO2
Max two marks from the following:
(The developer has…)
decomposed the problem/broken the problem down (into sub-problems); implemented sub-problems as subroutines;
used interfaces (including parameters and return values);
2
(b)  2 marks for AO1 (understanding)
Max two marks from the following:
The subroutines will be easier to test/mistakes will be easier to find;
The subroutines can be reused;
The subroutines can be changed without affecting the rest of the program;
The subroutines create better self-documenting code;
2
(c)  5 marks for AO3 (program)
1 mark for each correct label:
L1 max ;
L2 getRank ;
L3 index ;
L4 c ;
L5 result ;
5
[9]
Q4.
(a)  3 marks for AO2
1 mark for i column correct;
1 mark for one of indices 0, 3 and 4 assigned the value 99;
1 mark for all of indices 0, 3 and 4 (and no other indices) assigned the value 99;
Max 2 marks if any errors.
Correct table as follows:
[image: ] 
3
(b)  Mark is for AO2
Converts (row/grey scale image) to black and white // the values 0 and 99 // two colours/shades;
1
[4]
Q5.
9 marks for AO3 (programming)
[Mark A] for getting user input and assigning it to a variable;
[Mark B] for using selection to check for the length of user input (even if the Boolean condition is incorrect);
[Mark C] for a correct Boolean condition to check that the length is 8 (or not 8 if opposite logic used) even if not within a selection structure;
*[Mark D] for iterating over the instruction to check for (in)correct characters;
*[Mark E] for the iteration structure in Mark D isolating every character in the string (even if the subsequent check for validity is incorrect);
[Mark F] for using selection to check if a character is/is not '0' or '1';
[Mark G] for a correct Boolean condition checking the character is/is not a '0' and/or a '1';
[Mark H] outputting 'ok' and 'wrong' based on the length of the user input.
[Mark I] outputting 'ok' and 'wrong' based on the characters in the user input.
*A. alternative method for obtaining Mark D and Mark E
[Mark D] eight selection structures instead of iteration;
[Mark E] ensure every character is checked in Mark D;
Max 8 marks if any errors.
An example of a completely correct solution:
 
	instruction ← USERINPUT
	[A]

	valid ← True
	[Part H, Part I]

	IF LEN(instruction) ≠ 8 THEN
	[B, C]

	  valid ← False
	[Part H]

	ELSE
	 

	  FOR i ← 0 TO 7
	[D, E]

	    IF instruction[i] ≠ '0' AND
	[F, G]

	        instruction[i] ≠ '1' THEN
	 

	      valid ← False
	[Part I]

	    ENDIF
	 

	  ENDFOR
	 

	ENDIF
	 

	IF valid = True THEN
	 

	  OUTPUT 'ok'
	[Part H, Part I]

	ELSE
	 

	  OUTPUT 'wrong'
	[Part H, Part I]

	ENDIF
	 


Another example of a completely correct solution:
 
	instruction ← USERINPUT
	[A]

	IF LEN(instruction) = 8 THEN
	[B, C]

	  i ← 0
	[Part E]

	  valid ← True
	 

	  WHILE i < 8
	[D, Part E]

	    IF instruction[i] ≠ '0' THEN
	[Part F, Part G]

	      IF instruction[i] ≠ '1' THEN
	[Part F, Part G]

	        valid ← False
	 

	      ENDIF
	 

	    ENDIF
	 

	    i ← i + 1
	[Part E]

	  ENDWHILE
	 

	  IF valid = True THEN
	 

	    OUTPUT 'ok'
	[Part H, Part I]

	  ELSE
	 

	    OUTPUT 'wrong'
	[Part I]

	  ENDIF
	 

	ELSE
	 

	  OUTPUT 'wrong'
	[Part H]

	ENDIF
	 


Another example of a completely correct solution:
 
	instruction ← USERINPUT
	[A]

	IF LEN(instruction) = 8 THEN
	[B, C]

	  valid ← True
	 

	  FOR i ← 0 TO 7
	[D, E]

	    IF instruction[i] ≠ '0' THEN
	[Part F, Part G]

	      IF instruction[i] ≠ '1' THEN 
	[Part F, Part G]

	        valid ← False
	 

	      ENDIF
	 

	    ENDIF
	 

	  ENDFOR
	 

	  IF valid = True THEN
	 

	    OUTPUT 'ok'
	[Part H, Part I]

	  ELSE
	 

	    OUTPUT 'wrong'
	[Part I]

	  ENDIF
	 

	ELSE
	 

	  OUTPUT 'wrong'
	[Part H]

	ENDIF
	 


A final example of a completely correct solution that uses a FOR-EACH style loop to iterate over the characters of the string (note that this is not part of the AQA pseudo-code supplement but still perfectly acceptable):
 
	instruction ← USERINPUT
	[A]

	valid ← True
	[Part H, Part I]

	IF LEN(instruction) ≠ 8 THEN
	[B, C]

	  valid ← False
	[Part H]

	ELSE
	 

	  FOR ch IN instruction
	[D, E]

	    IF ch ≠ '0' AND ch ≠ '1' THEN
	[F, G]

	      valid ← False
	[Part I]

	    ENDIF
	 

	  ENDFOR
	 

	ENDIF
	 

	IF valid = True THEN
	 

	    OUTPUT 'ok'.
	[Part H, Part I]

	ELSE
	 

	    OUTPUT 'wrong'
	[Part H, Part I]

	ENDIF
	 


An example of a fully correct flowchart solution is:
[image: ] 
I. shape of symbols
[9]
Q6.
3 marks for AO2
(The value 8 is compared to the value) 4; R. if not first comparison
(The value 8 is compared to the value) 7; R. if not second comparison
(The value 8 is compared to the value) 8; R. if not third comparison
Alternatively:
(The value 8 is compared to the) first element of the array;
(The value 8 is compared to) every subsequent value of the array;
When the value 8 is found in the array it returns True;
[3]
Q7.
3 marks for AO2
(The value 8 is compared to) 13; R. if not first comparison
(The value 8 is compared to) 7; R. if not second comparison
(The value 8 is compared to) 8; R. if not third comparison
Alternatively:
(The value 8 is compared to the) midpoint of the array;
(The value 8 is compared to the) midpoint of the left subarray ([4, 7, 8]);
(The value 8 is compared to the) midpoint of the right subarray ([8]);
[3]
Q8.
Mark is for AO1 (understanding)
It is more efficient // requires fewer steps/comparisons (on average);
[1]
Q9.
4 marks for AO2
1 mark for values 4 and 8 in the i column (in that order);
1 mark for value 7 as the last value in the i column;
1 mark for down being set only once to True;
1 mark for finished being set only once to True;
Max 3 marks if any errors.
I. repeated values written in columns
I. exact placing of values as long as the vertical order is correct
Correct table as follows:
[image: ] 
[4]
Q10.
2 marks for AO2
A;
C;
I. use of quote marks
I. if answers are on the same line or different lines as long as order is clear
R. if more than two characters are stated
[2]
Q11.
3 marks for AO3 (programming)
1 mark for 1 correct position;
2 marks for 2 correct positions;
3 marks for 4 correct positions;
R. Any position which is used more than once
[image: ] 
[3]
Q12.
(a)  4 marks for AO2
1 mark for drawing one square at the start of row 0;
1 mark for the remaining 3 cells of row 0 correct;
1 mark for drawing a circle at the start of row 1;
1 mark for the remaining 3 cells of row 1 correct;
I. any marks that indicate the position of the needle.
Max 3 marks if any errors.
The completed pattern is as follows:
[image: ] 
4
(b)  4 marks for AO2
1 mark for drawing a circle in the second cell of row 0 and having no shape in the first cell of row 0;
1 mark for drawing exactly four shapes;
(If more than 4 shapes are drawn, stop marking)
1 mark for drawing a square in the third column of row 1;
1 mark for drawing a square in the fourth column and a circle in the fifth column;
I. any marks that indicate the position of the needle.
Max 3 marks if any errors.
The completed pattern is:
[image: ] 
4
(c)  4 marks for AO3 (programming)
[Mark A] use of the gotoRow subroutine with parameters 0, 1, 2 and 3;
[Mark B] use of shape('square') to draw four squares in row 0;
[Mark C] use of iteration to repeatedly draw the squares;
[Mark D] correct squares drawn in rows 1, 2 and 3;
Max 3 marks if any errors.
An example of a fully correct answer:
 
	squares ← 4
	[Part B, Part D]

	FOR row ← 0 TO 3
	[Part D]

	  gotoRow(row)
	[A]

	  FOR x ← 1 TO squares
	[Part B, C]

	    shape('square')
	[Part B, Part D]

	  ENDFOR
	 

	  squares ← squares + 1
	[Part D]

	ENDFOR
	 


Another example of a fully correct answer:
 
	gotoRow(0)
	[Part A]

	FOR x ← 1 TO 4
	[Part B, C]

	  shape('square')
	[Part B]

	ENDFOR
	 

	gotoRow(1)
	[Part A]

	FOR x ← 1 TO 5
	[Part D]

	  shape('square')
	[Part D]

	ENDFOR
	 

	gotoRow(2)
	[Part A]

	FOR x ← 1 TO 6
	[Part D]

	  shape('square')
	[Part D]

	ENDFOR
	 

	gotoRow(3)
	[Part A]

	FOR x ← 1 TO 7
	[Part D]

	  shape('square')
	[Part D]

	ENDFOR
	 


Another example of a fully correct answer:
 
	FOR row ← 0 TO 3
	[Part A]

	  gotoRow(row)
	[Part A]

	  FOR count ← 1 TO row + 4.
	[Part B, C]

	    shape('square')
	[Part B, D]

	  ENDFOR
	 


An example of a fully correct flowchart answer:
[image: ] 
I. shape of symbols
An example of a partially correct solution is:
gotoRow(0)
shape('square')
shape('square')
shape('square')
shape('square')
gotoRow(1)
shape('square')
shape('square')
shape('square')
shape('square')
shape('square')
gotoRow(2)
shape('square')
shape('square')
shape('square')
shape('square')
shape('square')
shape('square')
gotoRow(3)
shape('square')
shape('square')
shape('square')
shape('square')
shape('square')
shape('square')
shape('square')
This solution gets marks A, B and D but not mark C as there is no use of iteration.
4
[12]
Q13.
3 marks for AO2 (apply) 
the i column having all values 0-5 in order;
the first three rows of the image column;
the last three rows of the image column;
Max 2 marks if any additional values given.
[image: ]
[3]
Q14.
3 marks for AO1 (understanding) 
Start at the beginning (of the array/list);
compare each element/item until the value being searched for is found;
or the end of the array/list is reached;
[3]
Q15.
3 marks for AO3 (program) 
Mark A for setting the variable regValid to True/False within a selection structure;
Mark B for using a Boolean condition that checks if the first character is an 'R';
Mark C for using a Boolean condition that checks if the second character is a digit;
Max 2 marks if any errors in the answer.
A. minor changes to variable identifiers if the meaning is still clear.
Example of fully correct answer:
	regValid ← False
	[part A]

	IF reg[0] = 'R' and isDigit(reg[1]) THEN
regValid ← True
	[B,C]
[part A]

	ENDIF
	 


Example of another fully correct answer:
	IF reg[0] = 'R' THEN
	[B]

	   IF isDigit(reg[1]) THEN
	[C]

	     regValid ← True
	[part A]

	   ELSE
	 

	     regValid ← False
	[part A]

	   ENDIF
	 

	ELSE
	 

	  regValid ← False
	[part A]

	ENDIF
	 


Example of 2 mark answer:
	IF reg[0] = 'R' or isDigit(reg[1]) THEN
	[B,C]

	    regValid ← True
	[part A]

	ELSE
	 

	    regValid ← True
	[part A]

	ENDIF
	 


(only 2 marks awarded as the answer contains an error in the Boolean condition)
Example of another 2 mark answer:
	IF reg[0] = 'R' or isDigit(reg[1]) THEN
	[B,C]

	    regValid ← True
	[part A]

	ENDIF
	 


(only 2 marks awarded as only part of mark A is given)
Example of a fully correct flowchart solution:
[image: ]
[3]
Q16.
(a)  2 marks for AO2 (apply) 
The first value of result 16;
The last value of result 12;
Max 1 mark if more than two values are given for result.
The correct table is as follows:
[image: ]
2
(b)  2 marks for AO2 (apply) 
The x column fully correct;
The result column fully correct;
If more values are given in any column then max 1 mark.
The correct table is as follows: x result
[image: ]
I. horizontal alignment of values as long as the vertical order of values is correct.
2
(c)  Mark is for AO2 (apply) 
(The purpose of the algorithms is) to multiply the value in number by 3;
A. the value 4 instead of number.
NE. multiply two numbers.
1
(d)  Mark is for AO2 (apply) 
The algorithm in Figure 1 uses fewer steps/instructions;
A. the algorithm in Figure 1 uses fewer variables;
A. the algorithm in Figure 1 has fewer instructions so will take up less memory;
A. the algorithm in Figure 1 will execute in less time;
A. opposite statements for Figure 2.
NE. reference to number of lines.
1
[6]
Q17.
4 marks for AO2 (apply) 
Maximum 4 marks from:
If bubble sort chosen then: 
8 & 4 are swapped;
1 & 8 are swapped;
5 & 8 are swapped;
1 & 4 are swapped;
swap two consecutive numbers if the left number was greater than the right number;
would repeat passes until no swaps are made/all numbers are sorted // a pass of the array [1, 4, 5, 8] requiring no swaps and so the algorithm stops;
or by diagram:
[image: ]
R. the final (sorted) array if no prior arrays (excluding [8, 4, 1, 5]) are given.
If merge sort chosen then: 
separate the array into arrays that contain only one element;;
combine pairs of arrays, ordering the numbers // the values 8 and 4 combine to form the array [4, 8] and the value 1 and 5 combine to form the array [1, 5];
the arrays [4, 8] and [1, 5] combine to form the array [1, 4, 5, 8] / sorted array // 4 is compared with 1, 4 is compared with 5, 8 is compared with 5;
Or by diagram (to a max 4 marks):
[image: ] 
R. mark [A] if preceding row not given.
[4]
image5.jpeg

image6.jpeg

image7.jpeg

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

image14.jpeg

image15.jpeg

image16.jpeg

image17.jpeg

image18.jpeg

image19.jpeg

image20.jpeg

image21.jpeg

image22.jpeg

image23.jpeg

image24.jpeg

image25.jpeg

image26.jpeg

image27.jpeg

image28.jpeg

image29.jpeg

image30.jpeg

image31.jpeg

image32.jpeg

image33.jpeg

image34.jpeg

image35.jpeg

image36.jpeg

image37.jpeg

image38.jpeg

image39.jpeg

image1.jpeg

image2.jpeg

image3.jpeg

image4.jpeg

